ads

Understanding The Benefits Of Liposomal Encapsulation

By Jody Leach


Drugs used to fight disease typically target specific physical systems or organs. Intravenous drips and injections are the most directly effective delivery method, transferring those medications directly to the blood. Orally administered drugs face degradation from the substances that accompany normal digestion. Liposomal encapsulation creates a protective bubble that wards off acids, while encouraging absorption.

Discoveries leading to this process emerged nearly fifty years ago, and have led to the introduction of more controlled methods of administering medications. It is currently important in treating serious medical conditions such as some forms of cancer, treatment-resistant fungal infections, and degenerative vision conditions commonly associated with old age. Standard drug delivery mechanisms still predominate, but encapsulation is proving equally beneficial.

For drugs to survive the upper digestive tract intact, they need to be protected by some kind of barrier that does not cause any additional physical problems. The best solution so far is to create microscopic drug capsules using a material that is already a part of cellular walls throughout the human organism. When activated using one of three primary methods available today, tiny protective liposome bubbles are formed.

They are microscopic, and permit the medication protected inside to safely reach the bloodstream via the small intestine, where they are directly absorbed. This not only improves the overall therapeutic intent in many cases, but can also reduce the possibility of harmful side effects. Not all medications are suitable for this method of delivery, which is most effective with water-soluble drugs.

Because it involves fewer undesirable reactions than invasive delivery, there are immediate advantages of using this process. Liposomes are bio-compatible and biodegradable, leaving behind no undesirable toxins. They not only survive the onslaught of digestive acids, but are able to function as small time-release ports within the gut. When potentially toxic drugs must be used to fight cancers, fewer sensitive tissues face unwanted exposure.

While being used successfully today in many hospitals, there are some drawbacks. Production costs are comparatively high, but are subject to a natural decrease as product use expands. Seal leakage has been an issue in some cases, and simple oxidation processes can diminish effectiveness. Certain drugs may experience a diminished half-life, and their long-term viability may be reduced. Even with these known issues, positive benefits exceed negative reports.

The past decade has seen a transition from strictly medical venue to include delivery of nutritional supplements and cosmetic materials. Anecdotal evidence of an increase in physical well-being associated with administering vitamins and minerals in this way are common. Vitamin C has long been touted as a natural way to combat the effects of upper respiratory infections, and this method is said to provide noticeably better results than pills alone.

Although there is currently widespread information available outlining personal production of encapsulated herbs, vitamins and minerals, making medical-quality products is costly and complicated, and is not a panacea for the problems associated with aging. As uses for this drug delivery process continue to grow, consumers will benefit most from its incorporation into health regimens that are already known to be beneficial.




About the Author:



0 comments:

Post a Comment