The audiometer is used by audiology centers and ear, nose and throat (ENT) specialists for measuring hearing loss. It is usually one of the methods performed as part of an audiometry test. Both hardware and software-based audiometers are now available from various providers.
Audiometers built as a physical device emit audio tones at varying intensities. During the hearing loss evaluation test, the machine's output is fed to headphones and heard in each ear separately by the subject. A feedback button that can be pressed enables the subject to acknowledge each tone as they hear it.
The device can be a standalone machine or hooked up to a computer that controls the output and records all the feedback. These machines are made using different kinds of technologies, depending on the intended usage. Some are portable, others handhelds, and still others may be full-fledged systems that are meant to be used in one place. All of them are either bone-conduction or air-conduction audiometers.
The software-based device generates the same tone that is heard and responded to subjects in pretty much the same way. The only difference is that the tones in this case are prerecorded sounds stored in the computer. The audio output from the computer's sound card is sent to the headphones.
Hardware audiometers used by professional audiology centers, hospitals and research centers are more expensive, but also highly accurate and more reliable. These machines must be calibrated regularly to ensure that the intensity of the tone heard by subjects accurately reflects the level shown on the device display. Calibration also ensures standardized testing and consistent results no matter where the machine is used.
Audiometry software installed on desktops or laptops can be used at home by anyone, and it is relatively affordable. It is more difficult to calibrate the software, which also means that accuracy is hard to achieve. It is, however, still good enough to allow a subject to self-test and determine if their hearing is normal or needs medical treatment.
Regardless of whether it is software or hardware, the aim here is to determine at what point the subject fails to hear the tone. Physicians use this device as a useful aid for diagnosing hearing problems and treating them. The suggested course of action may vary, but usually includes a thorough cleaning of the ears to remove obstructions, followed by ear drops and maybe even a hearing aid and/or surgery if the problem is more serious.
Another major application for audiometers is industrial audiometric testing. The actual process is pretty much the same as the one described above. One of the key differences is the fact that patients don't visit the clinic. Instead, a mobile lab with the required equipment and technicians comes to the industrial facility for testing the hearing levels of workers who are constantly exposed to noise.
The tests performed on industrial workers are not just for evaluating their personal hearing loss. The results allow the company to identify trends and add more noise-muffling technology if a lot of workers are showing signs of weakened hearing ability. It may also be required under group health plans. Either way, an audiometer used in an industrial environment must be calibrated to a high degree of precision, which means it must be accurate to within a few fractions of a decibel.
Audiometers built as a physical device emit audio tones at varying intensities. During the hearing loss evaluation test, the machine's output is fed to headphones and heard in each ear separately by the subject. A feedback button that can be pressed enables the subject to acknowledge each tone as they hear it.
The device can be a standalone machine or hooked up to a computer that controls the output and records all the feedback. These machines are made using different kinds of technologies, depending on the intended usage. Some are portable, others handhelds, and still others may be full-fledged systems that are meant to be used in one place. All of them are either bone-conduction or air-conduction audiometers.
The software-based device generates the same tone that is heard and responded to subjects in pretty much the same way. The only difference is that the tones in this case are prerecorded sounds stored in the computer. The audio output from the computer's sound card is sent to the headphones.
Hardware audiometers used by professional audiology centers, hospitals and research centers are more expensive, but also highly accurate and more reliable. These machines must be calibrated regularly to ensure that the intensity of the tone heard by subjects accurately reflects the level shown on the device display. Calibration also ensures standardized testing and consistent results no matter where the machine is used.
Audiometry software installed on desktops or laptops can be used at home by anyone, and it is relatively affordable. It is more difficult to calibrate the software, which also means that accuracy is hard to achieve. It is, however, still good enough to allow a subject to self-test and determine if their hearing is normal or needs medical treatment.
Regardless of whether it is software or hardware, the aim here is to determine at what point the subject fails to hear the tone. Physicians use this device as a useful aid for diagnosing hearing problems and treating them. The suggested course of action may vary, but usually includes a thorough cleaning of the ears to remove obstructions, followed by ear drops and maybe even a hearing aid and/or surgery if the problem is more serious.
Another major application for audiometers is industrial audiometric testing. The actual process is pretty much the same as the one described above. One of the key differences is the fact that patients don't visit the clinic. Instead, a mobile lab with the required equipment and technicians comes to the industrial facility for testing the hearing levels of workers who are constantly exposed to noise.
The tests performed on industrial workers are not just for evaluating their personal hearing loss. The results allow the company to identify trends and add more noise-muffling technology if a lot of workers are showing signs of weakened hearing ability. It may also be required under group health plans. Either way, an audiometer used in an industrial environment must be calibrated to a high degree of precision, which means it must be accurate to within a few fractions of a decibel.
About the Author:
You can visit the website www.henanmedical.com for more helpful information about Accurate Hearing Loss Evaluations With An Audiometer
0 comments:
Post a Comment